UE1 - Chimie Générale : Etats d'équilibre - Thermochimie

Premier principe de thermodynamique : conservation de l'énergie mais pas de renseignement sur le sens de l'évolution du système => notion d'entropie

Second principe de thermodynamique : S est une fonction extensive dépendant de P et de T

- Transformation réversible : $dS = \frac{\delta Q}{r} \Rightarrow \Delta S = \int_{i}^{f} dS$ pour un système isolé dS=0
- Transformation irréversible : $dS > \frac{\delta Q}{T}$ pour un système isolé dS>0

Variation d'entropie standard d'une réaction se produisant à T constante : Entropie standard de réaction

 $\Delta_r S_{(T)}^{\circ} = \sum_k v_k S_k^{\circ}(T)$ à partir des <u>entropies absolues</u>, s'exprime en **J/mol/K** $S_{T=0 \ K}^{\circ} = 0$ $\Delta_r S_{(T)}^{\circ} = \sum_k v_k \Delta_f S_k^{\circ}(T)$ à partir des entropies standard de formation $\Delta_f S^{\circ}(corps\ simple) = 0$ $\Delta_r S = \Delta_{c.e.} S = \frac{\Delta_{c.e.} H}{T}$ (c.e. = changement d'état)

Etats d'équilibre

a_(x): activité d'un constituant

Solide pur	a _(x) = 1
Liquide pur	$a_{(x)} = 1$
Solution	$a_{(x)} = \frac{C_{(x)}}{C^{\circ}}$
Gaz parfait	$a_{(x)} = \frac{P_{(x)}}{P^{\circ}}$

Quotient de réaction :
$$\phi = \frac{(a_C)^c (a_D)^d}{(a_A)^a (a_B)^b}$$
Constante d'équilibre : loi d'action de masse ou loi de Guldberg et

Waage : $\Phi_{\acute{e}q} = K_r = \frac{(a_C)^c_{\acute{e}q} (a_D)^d_{\acute{e}q}}{(a_A)^a_{\acute{e}q} (a_B)^b_{\acute{e}q}}$
 $\Phi < K_{(T)}$
Sens 1 \rightarrow

Φ< K _(T)	Sens 1 →
$\Phi > K_{(T)}$	Sens -1 ←
Ф=К _(Т)	Etat équilibre

Fonction enthalpie libre G

La condition d'entropie maximale est un critère convenable pour l'équilibre d'un système isolé

- ΔS > 0 : processus spontané (irréversible)
- $\Delta S = 0$: processus réversible

G=H-TS

A température constante : $\Delta G = \Delta H - T\Delta S$

Un système non isolé à T, P=cste, évolue spontanément dans le sens où ΔG<0

 $(\frac{\partial G}{\partial \xi})_{T,P} = \Delta_r G(\xi)$ est la pente de la courbe $G=f(\xi)$ au point ξ

 $(\frac{\partial G}{\partial \xi})_{T,P} = \Delta_r G(\xi) < 0$ => sens 1; toute réaction chimique ne peut progresser que si l'enthalpie libre du système réactionnel diminue.

$$\Delta_r G_{(T)} = RT \ln \frac{\phi}{\kappa}$$

Enthalpie libre standard de reaction : $\Delta_r G_{(T)}^{\circ} = \Delta_r H_{(T)}^{\circ} - T \Delta_r S_{(T)}^{\circ}$ à T constante

 $\overline{\Delta_r G_{(T)}^{\circ}} = \sum_k v_k \Delta_f G_k^{\circ}(T) \qquad \Delta_r G_{(T)}^{\circ}(\text{corps simple}) = 0$

VARIATION DE L'ENTHALPIE LIBRE EN MILIEU BIOLOGIQUE : $\Delta_r G_{(T) pH=x} = \Delta_r G_{(T) pH=x}^{\circ} + RT \ln \Phi_{pH=x}$

$$\alpha = \frac{\xi_{\text{\'eq}}}{\xi_{max}} = \frac{\xi_{\text{\'eq}}}{n_{\text{\'e},0}} = \frac{nombre\ de\ moles\ dissoci\'ees\ de\ PCl_5}{nombre\ de\ moles\ de\ PCl_5} \grave{a}\ l'\acute{e}tat\ initial} \ => \ \xi_{\text{\'e}q=n_{\text{\'e},0}} * \alpha \ \text{d'où}\ K = \frac{\alpha^2}{(1-\alpha^2)} * P_{tot}$$

Loi de modération de Le Châtelier

Soit un système en équilibre :

- a) **Effet de la température** : quand la température <u>augmente</u>, l'équilibre se déplace dans le sens <u>endothermique</u>, c'est-à-dire dans le sens où $\underline{\Delta}_f H$ est <u>positif</u>
- b) Variation de la pression totale : lorsque la pression <u>augmente</u>, le système évolue dans le sens qui la fait baisser, donc dans le sens qui diminue le nombre de moles de gaz
- c) **Effet des variations de concentration (ou de pression partielle)** : le système évolue dans le sens qui <u>consomme</u> le <u>réactant</u> ajouté
- d) Addition d'un gaz inerte

Influence de la température sur la constante d'équilibre(K_T)

$$K_{(T_2)} = K_{(T_1)} * \exp(-\frac{\Delta_r H^{\circ}}{R})(\frac{1}{T_2} - \frac{1}{T_1})$$
 pour R=8.31 J/K/mol : $\Delta_r H^{\circ}$ en J/mol

Couplage énergétique

De nombreuses réactions du métabolisme ont un $\Delta_r G$ défavorable qui ne permettrait pas spontanément la synthèse des composés dont l'organisme a besoin.

Ces réactions peuvent être malgré tout réalisées **grâce** au **couplage énergétique** qui associe une réaction **endergonique** (Δ_r G>0) à une réaction **exergonique** (Δ_r G<0).