UE1 - Chimie Générale : Liaisons chimiques

Liaisons covalentes

- Schéma de Lewis : chaque atome est entouré de points égal au nombre d'e- de valence
- Règle de l'octet : atomes tendent à se combiner de façon à ce que leur couche externe renferme

Chaque atome engagé dans une liaison cherche à acquérir la configuration du gaz rare qui le suit dans classification périodique

Règle au moins respectée dans les 2 premières périodes du tableau

LIAISONS COVALENTES SIMPLES : ΔEN faible < 2

C'est une mise en commun d'un doublet d'e- entre 2 atomes identiques ou ayant des EN voisines Nombre total de doublets dans la molécule :

Nombre total = $\frac{[\sum nbre \text{ \'electrons de valence de tous les atomes}] - valeur}{alg\'ebrique de la charge}$

- → Orbitale restée vide = lacune électronique
- Formation de liaisons ne conduit pas nécessairement à la saturation de la couche externe ; il peut subsister des cases vides sur certains atomes dans une molécule

LIAISONS COVALENTES MULTIPLES:

Liaisons σ et π ne sont pas de même nature : elles ont des NRJ différentes

Le dioxygène :
$$|\underline{\mathbf{O}} \bullet \bullet \underline{\mathbf{O}}| \longrightarrow \langle \mathbf{O} = \mathbf{O} \rangle$$
 Le diazote : $|\underline{\mathbf{N}} \bullet \bullet \bullet \mathbf{N}| \longrightarrow |\mathbf{N} \equiv \mathbf{N}|$ $= \begin{cases} 1 & \text{liaison } \sigma \\ \text{et} \\ 2 & \text{liaison } \pi \end{cases}$

Acides aminés: se lient les uns aux autres par une liaison peptidique. Au cours de la réaction une molécule **d'eau est éliminée**

Liaison peptidique

LIAISON COVALENTE DATIVE: mise en commun d'e- entre un doublet libre d'un atome B et une lacune électronique d'un atome A

(flèche du donneur vers accepteur) PAS flèches dans schéma de Lewis

Extension de la règle de l'octet et hypervalence : à partir de la 3^{ème} période de classification, orbitales d permettent nbre d'e-supérieur à 8 donc valence maximale (cas du phosphore)

Remarque : pptés physico-chimiques de certaines molécules sont <u>mieux mises</u> en évidence par représentations de Lewis ne respectant pas la règle de l'octet

Structures de Lewis les plus probables :

- Celles attribuant la charge à l'atome le plus électronégatif
- Celles pour lesquelles la somme des valeurs absolues des charges formelles est minimale

LIAISON IONIQUE: ΔEN grand > 2

Condition: très forte EN entre les atomes

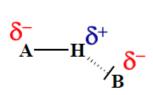
Il y a un transfert total d'1 ou plusieurs e- de l'élt le - EN vers celui + A' EN => formation de 2 ions

MOMENT DIPOLAIRE D'UNE LIAISON COVALENTE POLAIRE: A et B ont des EN différentes

- Déplacement du nuage électronique vers l'élément le + EN
- Apparition de charges partielles δ + sur A et δ sur B et de moment **dipolaire** réel : $\| \rightarrow \| = |\mathbf{e} * \boldsymbol{\delta}| * \mathbf{d}$ (en C.m) ou μ i (en Debye)=4.8*d(Å)

δ-

Pourcentage de caractère ionique d'une liaison covalente A-B polaire : $(\%i) = 100\delta = \frac{\mu_{\text{réel}}}{100} * 100$ Une molécule est polaire si le moment dipolaire est nul (somme vectorielle nulle)


Limites et insuffisances du modèle de Lewis :

- Permet interprétation satisfaisante des mécanismes fondamentaux de formation et de rupture des liaisons
- N'explique pas les **pptés magnétiques** des molécules ou des ions moléculaires
- N'apporte pas d'élts sur l'orientation géométrique des liaisons, la différence de comportement entre les liaisons σ et les liaisons π .

Liaisons faibles:

Interactions s'exerçant entre des atomes sans échanges d'électrons NRJ < 40kJ/mol

LIAISON HYDROGENE: E~10 à 30 kJ/mol Liaisons intermoléculaires/intramoléculaires Augmentation de Tébullition et de la viscosité INTERACTION DE VAN DER WAALS: E~0 à 20 kJ/mol

Interactions	Dipôles	Equation	Ce qui est apporté par l'équation :	
De Keesom	Entre dipôles permanents: le barycentre moyen des charges négatives -q ne se confondent pas	$E_K = -K_K \left(\frac{\mu_A * \mu_B}{T * r^6}\right)$	 Plus le moment dipolaire est grand, plus les interactions de Keesom seront importantes Ces interactions diminuent rapidement avec la distance Plus la température augmente, plus l'agitation thermique est importante et entraine une diminution de l'énergie d'interaction 	
De Debye	Entre <u>dipôle</u> <u>permanent</u> et dipôle <u>induit</u> (apparition d'un moment dipolaire)	$E_D = -K_D(\frac{\mu_A^2 * \alpha_B}{T * r^6})$	 Interactions de Debye diminuent rapidement avec la distance Lorsque la température augmente, l'énergie d'interaction de Debye diminue E_D augmente avec le moment dipolaire de A et avec la polarisabilité de B 	
De London	Entre dipôle instantané et dipôle induit (énergies de dispersion) dans toutes les espèces polaires et apolaires	$E_L = -K_L(\frac{\alpha_A * \alpha_B}{r^6})$	 Plus la polarisabilité est grande, plus les interactions de London seront importantes. Ce interactions augmentent donc avec la taille de molécules (avec Z) Ces interactions diminuent rapidement avec le distance Contrairement à E_K et E_D, E_L ne dépend pas de la température 	

Géométrie des édifices covalents : règles de Gillespie V.S.E.P.R. = valence shell electron pair repulsion

- Tous les doublets (liants et libres) de la couche de valence de l'atome central A sont placés à la surface d'une sphère centrée sur le noyau
- Les doublets d'e- se positionnent de telle sorte que les répulsions électroniques soient minimales (doublets situés aussi loin que possible les uns des autres)

AX_mE_n

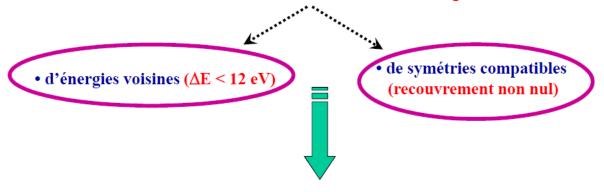
A : atome central X : atome lié à A

m : nombre d'atomes X liés à A E : doublet libre autour de A

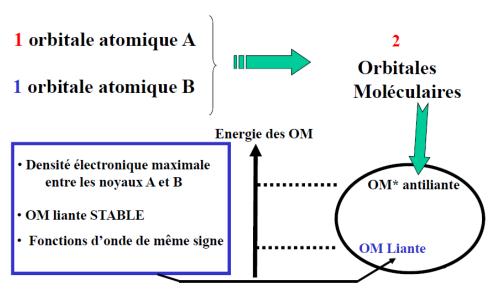
n : nombre de doublets libres autour de A

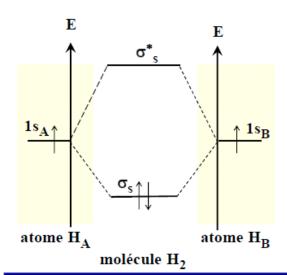
	_	_
_ A]	~	
-A	•	P.
	-m	1-1

	III II
m+n	Géométries de base
2	linéaire
3	triangulaire plane
4	tétraédrique
5	bipyramide trigonale
6	octaédrique


AX_mE_n	Molécules	Géométrie	Angles	Exemples
AX ₂	A	Base linéaire	α=180°	BeH ₂ CO ₂
AX ₃	A	Triangulaire plane	α=120°	BF ₃
AX ₂ E	a A	Coudée ou angulaire	α<120°	SnCl2
AX ₄	α A	Tétraédrique	α=109.28°	CH₄
AX₃E	A	Pyramide trigonale	α<109.28°	NH ₃
AX ₂ E ₂	α	Coudée en forme de V ou angulaire	α≤109.28°	H₂O
AX ₅	(e) A A C C C C C C C C C C C C C C C C C	Bipyramide trigonale	α=120° β=90°	PF ₅
AX₄E	A	SF ₄		SF₄
AX ₃ E ₂	A	En T		ICl ₃

AX ₂ E ₃	A	Linéaire		XeF ₂
AX ₆	A	Octaédrique	α=90°	SF ₆
AX₅E	A	Pyramide à base carrée		BrF₅
AX₄E₂	A	Plane carrée		XeF ₄


Théorie des orbitales moléculaires


Méthode: C.L.O.A.

combinaison linéaire d'orbitales atomiques :

Orbitales Moléculaires

: orbitale moléculaire liante

: orbitale moléculaire antiliante

• Configuration électronique de H_2 : $\sigma_s^{\ 2}$, $\sigma_s^{\ *0}$

Diagramme d'énergie des O.M.

- 2 O.A. ⇒ 2 O.M.
- Nombre des e⁻ dans les O.M. = nombre des e⁻ dans les O.A. = 2
- · Les règles de Klechkowski, Hund et Pauli s'appliquent.

Indice de liaison : $N_l = \frac{(nb \text{ \'electrons 0.M liantes-nb \'electrons 0.M.antiliantes)}}{1}$

Lorsque l'indice de liaison N_l augmente :

- L'énergie de dissociation E_{diss} de la liaison augmente
- La distance interatomique (longuer de liaison) diminue